11,659 research outputs found

    Capture cross sections of the acceptor level of iron-boron pairs in p-type silicon by injection-level dependent lifetime measurements

    Get PDF
    Injection-level dependent recombination lifetime measurements of iron-diffused, boron-doped silicon wafers of different resistivities are used to determine the electron and hole capture crosssections of the acceptor level of iron-boron pairs in silicon. The relative populations of iron-boron pairs and interstitial iron were varied by exposing the samples to different levels of illumination prior to lifetime measurements. The components of the effective lifetime due to interstitial iron and iron-boron pairs were then modeled with Shockley-Read-Hall statistics. By forcing the sum of the modeled iron-boron and interstitial iron concentrations to equal the implanted iron dose, in conjunction with the strong dependence of the shape of the lifetime curves on dopant density, the electron and hole capture cross-sections of the acceptor level of iron-boron pairs have been determined as (3±2)×10-14cm-2 and (2±1)×10-15cm-2

    Patterson Function from Low-Energy Electron Diffraction Measured Intensities and Structural Discrimination

    Full text link
    Surface Patterson Functions have been derived by direct inversion of experimental Low-Energy Electron Diffraction I-V spectra measured at multiple incident angles. The direct inversion is computationally simple and can be used to discriminate between different structural models. 1x1 YSi_2 epitaxial layers grown on Si(111) have been used to illustrate the analysis. We introduce a suitable R-factor for the Patterson Function to make the structural discrimination as objective as possible. From six competing models needed to complete the geometrical search, four could easily be discarded, achieving a very significant and useful reduction in the parameter space to be explored by standard dynamical LEED methods. The amount and quality of data needed for this analysis is discussed.Comment: 5 pages, 4 figure

    PPM/NAR 8.4-GHz noise temperature statistics for DSN 64-meter antennas, 1982-1984

    Get PDF
    From August 1982 through November 1984, X-band downlink (8.4-GHz) system noise temperature measurements were made on the DSN 64-m antennas during tracking periods. Statistics of these noise temperature values are needed by the DSN and by spacecraft mission planners to assess antenna, receiving, and telemetry system needs, present performance, and future performance. These measurements were made using the DSN Mark III precision power monitor noise-adding radiometers located at each station. It is found that for DSS 43 and DSS 63, at the 90% cumulative distribution level, equivalent zenith noise temperature values fall between those presented in the earlier (1977) and present (1983) versions of DSN/Flight Project design documents. Noise temperatures measured for DSS 14 (Goldstone) are higher than those given in existing design documents and this disagreement will be investigated as a diagnostic of possible PPM or receiving system performance problems

    Experimentally Attainable Optimal Pulse Shapes Obtained with the Aid of Genetic Algorithms

    Full text link
    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function with genetic algorithms. As a first application of the methodology we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.Comment: 7 pages, 6 figure

    Critical connectedness of thin arithmetical discrete planes

    Full text link
    An arithmetical discrete plane is said to have critical connecting thickness if its thickness is equal to the infimum of the set of values that preserve its 22-connectedness. This infimum thickness can be computed thanks to the fully subtractive algorithm. This multidimensional continued fraction algorithm consists, in its linear form, in subtracting the smallest entry to the other ones. We provide a characterization of the discrete planes with critical thickness that have zero intercept and that are 22-connected. Our tools rely on the notion of dual substitution which is a geometric version of the usual notion of substitution acting on words. We associate with the fully subtractive algorithm a set of substitutions whose incidence matrix is provided by the matrices of the algorithm, and prove that their geometric counterparts generate arithmetic discrete planes.Comment: 18 pages, v2 includes several corrections and is a long version of the DGCI extended abstrac

    Intertemporal Substitution and the Liquidity Effect in a Sticky Price Model

    Get PDF
    The liquidity effect, defined as a decrease in nominal interest rates in response to a monetary expansion, is a major stylized fact of the business cycle. This paper seeks to understand under what conditions such an effect can be explained in a general equilibrium model with sticky prices and capital adjustment costs. The paper first confirms that, with separable preferences, a low degree of intertemporal substitution in consumption is a necessary condition for the existence of the liquidity effect. Contrary to this result, in a model with non-separable preferences and capital accumulation it takes an implausibly high degree of intertemporal substitution to produce a liquidity effect. The robustness of these results to alternative degrees of nominal rigidities, money demand properties and real rigidities is also analyzed.
    • …
    corecore